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I study the long-term behavior of populations of nonlinear oscillators with all-to-all, noninstantaneous, pulse
coupling. With fast enough excitatory coupling both the fully synchronized and the asynchronous state are
unstable. In this case individual units fire quasiperiodically even though the network as a whole shows a
periodic firing pattern. The behavior of networks with three or more units is different in this regard from that
of two-unit networks. With inhibitory coupling the network can break up into a variable number of fully
synchronized clusters. For fast inhibition the number of clusters tends to be large, while the number of clusters
is smaller for slow inhibition.@S1063-651X~96!09310-5#

PACS number~s!: 87.10.1e, 05.901m, 03.201i

I. INTRODUCTION

Most studies of the temporal organization of populations
of nonlinear oscillators concentrate either on synchronous
activity @1# or on the asynchronous state@2#. However, many
model networks of nonlinear oscillators have regions in pa-
rameter space in which the population evolves neither to an
asynchronous state nor to a fully synchronized state. These
partially synchronized states are usually discussed in the
presence of noise@3,4# or inhomogeneities@5,6#. Yet many
networks of identical nonlinear oscillators can evolve to
stable partially synchronized states, even in the absence of
noise. In this paper we will look in detail into the behavior of
such networks.

In a previous paper@7# we considered a population of
integrate-and-fire oscillators, with all-to-all coupling, and de-
termined the conditions under which the asynchronous state
is stable. Here the long-time behavior of such a network with
parameter values for which the asynchronous state is un-
stable is studied. We find that these parameter values do not
typically lead to fully synchronized states but rather to partial
synchrony.

The paper is organized as follows. In Sec. II the model is
outlined. Section III briefly describes previous work on two-
unit systems@8# and its implications for larger networks. In
networks of two oscillators with excitatory coupling, the
units fire periodically in the partially synchronized state. In
Sec. IV I show that this is not true for networks with three or
more units. It is shown that for networks with three or more
units the partially synchronized state is characterized by qua-
siperiodically firing units.

Sections V–VIII deal with large excitatory networks. Sec-
tion V briefly summarizes the analysis of the asynchronous
state developed in Ref.@7#. Section VI discusses numerical
simulations of large networks with parameter values for
which the asynchronous state is unstable. I show that the
network evolves to a partially synchronous state in which the
firing rate fluctuates periodically. This state is analyzed in
Sec. VII. Section VIII describes the quasiperiodic behavior

of individual units in this state.
Section IX discusses large networks with inhibitory cou-

pling. Depending on the speed of the coupling, the network
can break up in two or more clusters, with all oscillators
belonging to a cluster in complete synchrony@9,5,10#. The
exact number of clusters into which the network breaks up
depends on the initial condition. In Sec. X we evaluate the
results of our study and consider the implications for popu-
lations of more biologically realistic model neurons.

II. MODEL

The model consists ofN identical oscillators that are uni-
formly coupled to all other oscillators. Oscillatori is de-
scribed by a voltagelike variablexi that runs between zero
and one. The evolution ofxi is given by the equation

dxi
dt

5F~xi !1gEi~ t !. ~2.1!

The functionF determines the behavior of the oscillator in
the absence of coupling. It can be an arbitrary positive-
definite function. The second term in Eq.~2.1! describes the
coupling.g is the coupling strength, withg.0 for excitatory
coupling andg,0 for inhibitory coupling.Ei(t) is a dy-
namical variable that characterizes the inputs from the other
oscillators.

Equation~2.1! determines the behavior ofxi in the range
between 0 and 1. Whenxi reaches the thresholdxi51, the
cell is said to fire. This firing immediately resetsxi to zero
and increments the coupling variableEj (t) for jÞ i by a
single pulse response. I will set the response for a single
pulse equal to ana function

Ej~ t !→Ej~ t !1
a2

N21
~ t2t0!e

a~ t02t !. ~2.2!

Here t0 is the time at which oscillatori fires.
Except for Secs. III and IV I work in the large-N limit. In

this limit I will not remove the self-coupling from Eqs.~2.1!
and ~2.2!. We then haveEj (t)5E(t) for all j with E(t)
incremented by

*Present address: Racah Institute of Physics, Hebrew University,
Jerusalem 91904, Israel.

PHYSICAL REVIEW E NOVEMBER 1996VOLUME 54, NUMBER 5

541063-651X/96/54~5!/5522~16!/$10.00 5522 © 1996 The American Physical Society



E~ t !→E~ t !1
a2

N
~ t2t0!e

a~ t02t !. ~2.3!

This is equivalent to a mean-field approximation.
The results we obtain for this model also hold for a more

general model in which the input in celli depends on the
state variablexi . In this model the state variables satisfy

dxi
dt

5F~xi !1G~xi !Ei~ t !, ~2.4!

with G.0 for excitatory coupling andG,0 for inhibitory
coupling. This is because a transformation of the state vari-
able xi→g*0

xidx/G(x), with g215*0
1dx/G(x), will trans-

form Eq. ~2.4! into Eq. ~2.1!. So without loss of generality
we can assume that the coupling is independent ofxi .

Another way the model can be generalized is by describ-
ing the pulse response by a difference of exponentials rather
than by ana function. This amounts to replacing Eq.~2.2!
by

Ei~ t !→Ei~ t !1
a1a2

~a12a2!~N21!
~ea1~ t02t !2ea2~ t02t !!.

~2.5!

One regains thea function by taking the limita1→a25a.
Since models with a difference of exponentials rather than an
a function as response to a single pulse exhibit qualitatively
the same behavior and their analysis is essentially the same,
this generalization is not considered here.

III. TWO-OSCILLATOR SYSTEM

To understand the behavior of a system with a large num-
ber of oscillators it is often helpful to know how a two-unit
system evolves. Here we will give a short description of a
two-oscillator system. A more detailed analysis can be found
in @8#.

We will limit our discussion to a system for which the
state variables satisfy the equations

dxi
dt

5X02xi1gEi~ t !, ~3.1!

with i51,2 andX0.1. The coupling variableE1 is given by

E1~ t !5 (
i

t2,i,t

a2~ t2t2,i !e
a~ t2,i2t !, ~3.2!

wheret2,i is the set of times at which cell 2 fires. A simular
equation holds forE2.

It turns out that both for excitatory coupling and for in-
hibitory coupling that is not too strong the system evolves to
a state in which the oscillators fire periodically. We assume
that unit 1 fires at timest5nT and unit 2 att5(n1f)T, for
some periodT and phase differencef between 0 and 1.
Then

E1~ t !5ET~ t2fT!, E2~ t !5ET~ t !, ~3.3!

with

ET~ t !5
a2

12e2aT S Te2aT

12e2aT 1t De2at ~3.4!

for 0<t,T andET(t1T)5ET(t).
Using Eq.~3.2!, with x1(0

1)50, one can show@8# that
x1(T

2) satisfies

x1~T
2!5X0~12e2T!1ge2TE

0

T

dtetET~ t2fT!.

~3.5!

Since unit 1 fires again at timeT, x1(T
2) has to satisfy

x1(T
2)51.

Using x2(fT
1)50, x2„(f11)T2

… can be written as

x2„~f11!T2
…5X0~12e2T!1gE2TE

0

T

dtetET~ t1fT!

511ge2TE
0

T

dtet@ET~ t1fT!

2ET~ t2fT!#. ~3.6!

This has to be equal to 1 also.
The requirement that bothx1(T

2) andx2„(f11)T2
… are

equal to 1 can be satisfied only for a few values off. As Eq.
~3.6! shows, the two values forf that one expects from
symmetry arguments,f50 andf51/2, are always solu-
tions. For smalla these are the only solutions. Asa is in-
creased, one reaches a bifurcation pointa5acr . At this
point there is a pitchfork bifurcation of thef51/2 solution.
Beyond this point there are two extra solutionsf1,1/2 and
f2512f1 in which the units are partially synchronized. As
a is increasedf1 goes to 0 asymptotically; the cells get
closer and closer to synchrony~see Fig. 1!.

Stability analysis shows@8# that for excitatory coupling
the antisynchronous statef51/2 is stable fora,acr . For
a.acr the antisynchronous state is no longer stable, while
the two partially synchronized solutionsf1 and f2 are
stable. The synchronous solutionf50 is always unstable.

For inhibitory coupling the synchronized solution is al-
ways stable. The antiphase state is unstable fora,acr and
stable fora.acr . The two other solutions fora.acr are
unstable for inhibitory coupling@8#.

One can show that for a more general description, in
whichX02xi in Eq. ~3.2! is replaced byF(xi), the situation
does not change qualitatively as long asF.0 and
dF/dx,0. Then there is also always an in-phase and an
antiphase solution and a pitchfork bifurcation of the an-
tiphase state at some valueacr , while for a.acr there are
two extra, partially synchronized, solutions. For excitatory
coupling the antisynchronous state is still the only stable
solution if a,acr and fora.acr the partially synchronized
solutions are the only stable solutions. For inhibitory cou-
pling the synchronous state is always stable, while the anti-
synchronous state changes from unstable for slow coupling
to stable for fast coupling.

In a two-unit system with excitatory coupling we have
antisynchronous firing for slow coupling. As the time con-
stant for the coupling is decreased past the critical value the
units will fire more and more in synchrony. However, there
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will never be complete synchronization. If a system with two
oscillators does not reach complete synchrony, one expects
large networks also to be only partially synchronized. One
also expects the synchrony to increase asa is increased.

For inhibitory coupling the synchronous state is the only
stable state in a two-oscillator network with slow coupling. It
seems likely that in large networks with slow inhibitory cou-
pling the oscillators will also fully synchronize. For faster
coupling a two-cell network can be either in synchrony or in
antisynchrony. In a large network the synchronous state is
therefore probably still stable, but one expects there to be
another stable state in which the cells have broken up in two
clusters, so that each unit is in synchrony with the other units
in its cluster and in antisynchrony with the units in the other
cluster. One might also expect that if the coupling is speeded
up even more there are stable states in which the oscillators
have broken up in more than two clusters.

In Sec. V I will show that large excitatory networks
evolve to a partially synchronized state if the coupling rate
constant exceeds a critical value and that above this critical
value the level of synchrony increases with the rate constant.
In Sec. IX it is shown that the units in inhibitory networks
break up in clusters, with a tendency to have a large number
of clusters if the coupling rate constant is larger. This con-
firms the intuition we have gained from two-neuron net-
works.

IV. A FEW NEURONS

In excitatory networks with just two oscillators, the cells
fire in antisynchrony if the coupling time constants are large,
while for faster coupling the cells partially synchronize. This
leads one to suspect that in networks withN oscillators, the

system will evolve to an asynchronous state, with the units
firing 360/N° out of phase if the coupling is slow, while for
faster coupling the units will fire in a partially synchronized
pattern.

To test this expectation I performed numerical simula-
tions for networks of three units satisfying Eqs.~2.1! and
~2.2! with F(x)5X02x, for different values ofX0, g, and
a. X0 was always chosen larger than 1 andg always between
0 and 1 so as to ensure continuous firing with finite rates.

For all choices ofX0 andg the network evolved to a state
in which the oscillators were 120° out of phase, regardless of
the initial conditions, for sufficiently smalla. Whena was
increased past a critical value this was no longer the case and
the spike trains evolved to a complicated pattern. Figure 2
shows an example.

In Fig. 2~a! the firing times for a network withX051.3,
g50.4 anda59.0 are shown. To facilitate the identification
of the three units the spikes are drawn to different heights for
different cells. The spikes of the three units tend to be clus-
tered, indicating that the network is partially synchronized,
but the cells no longer fire periodically. This is in marked
contrast to two-unit networks, in which the units fire periodi-
cally in the partially synchronized state. Figure 2~b! shows a
plot of the interspike interval of a unittn against the previous
interspike interval,tn21. All points lie on a closed curve,
consisting of three loops. That these points all lie on a closed
curve indicates that the units fire quasiperiodically.

To understand why, in a two-unit network, the oscillators
fire periodically in the partially synchronized state, while
they fire quasiperiodically in a three-unit network, I will

FIG. 1. Phase difference in a periodically firing two-unit system.
The phase differencef between the units is plotted against the
coupling rate constant. Solid lines, stable solution; dashed lines,
unstable solution.~a! For excitatory coupling.f51/2 is stable for
a,acr . Fora.acr the partially synchronized solutions are stable.
All other states are unstable.~b! Inhibitory coupling. The in-phase
solution is always stable, while the antiphase solution is stable for
a.acr . All other solutions are unstable.

FIG. 2. ~a! Time of firing of each cell plotted for a three-
oscillator network for a time interval after the transients have died
out. To facilitate the distinction between the three cells, the spikes
are drawn to different height for the different oscillators. Notice that
the firing pattern betweent50 andt55 closely resembles the fir-
ing pattern betweent534.5 andt539.5, though the role of the
units is changed. This indicates quasiperiodic behavior. In this
simulation,F(x)51.32x, g50.4, anda59.0. ~b! Interspike inter-
val tn , plotted against the previous interspike interval. The points
lie on a curve that makes three loops before it repeats itself.
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study the bifurcation from the asynchronous state in some
detail.

I will analyze anN oscillator system in which the state
variablesxi obey the equation

dxi
dt

5X02xi1gEi~ t !, ~4.1!

with Ei given by Eq.~2.2!. In the asynchronous state, unit
i fires at timest5@n1( i21)/N#T, whereT is the period
with which the oscillators fire andn is an integer. The cou-
pling functionEi(t) is given by

Ei~ t !5
1

N21(jÞ i
n

EsS t1Fn2
j21

N G t D
[

1

N21(jÞ i
ETS t2F j21

N GTD . ~4.2!

Here we usedEs(t)[a2texp(2at) to denote thea function.
To investigate the stability of this state we assume that the

times at which the cells fire are slightly perturbed. Uniti
fires at timest5@n1( i21)/N#T1dn,i . We require that the
perturbations are consistent with Eqs.~4.1! and ~2.2!. If
dn,i is given for n,n0, one can calculatex1(t) for
t<n0T1dn0,1 . At t5n0T1dn0,1 cell 1 fires again, therefore
the x1(n0T1dn0,1) must be 1. This determinesdn0,1 . Once
dn0,1 is known, dn0,2 can be determined, etc. The antisyn-

chronous state is stable if for alli and j , dn,i2dn, j→0 for
n→`. ~If dn,i converges tod for all i the whole system is
translated in time by an amountd, but theN oscillators will
still fire asynchronously.!

If the perturbations are small one can writedn,i5lnd i .
The asynchronous state is stable if apart from the solution
l51 and d i5d all solution haveulu,1. At a5acr the
asynchronous state becomes unstable and one or more solu-
tions with ulu,1 for a,acr will switch to solutions with
ulu.1 for a.acr . For a5acr1da, with 0,da!1, one
can, in general, have either one real eigenvalue andulu.1
with ulu<1 for all other eigenvalues or two complex-
conjugate eigenvalues withulu.1 and ulu<1 for all other
eigenvalues.

The behavior of the network past the transition point de-
pends on how the asynchronous state becomes unstable. If
there is one real eigenvaluel511e, with 0,e!1 for
a5acr1da, the system undergoes a pitchfork bifurcation at
the critical point. This can be a sub- or supercritical pitchfork
bifurcation. If the bifurcation is subcritical there is no stable
solution close to the asynchronous state past the critical
point. If the bifurcation is supercritical there is a stable solu-
tion close to the asynchronous state past the critical point. In
this solution uniti fires at timet5@n1( i21)/N#T1D i for
some smallD i . So if past the critical point the system is
slightly perturbed from the asynchronous state, the perturba-
tions will evolve todn,i→D i for largen. The oscillators will
no longer fire antisynchronously, but they will still fire peri-
odically past the bifurcation point.

If past the critical point the system has two complex-
conjugate eigenvalues for whichulu511e, the network un-
dergoes a sub- or supercritical Hopf bifurcation. In a subcriti-

cal Hopf bifurcation, like in the subcritical pitchfork
bifurcation, there is no stable solution close to the asynchro-
nous state past the critical point. In a supercritical Hopf bi-
furcation there is a stable solution past the critical point. In
this solution the perturbation around the asynchronous state
varies periodically. In this case small perturbations ofd0,i of
the asynchronous state will evolve todn,i→D icos(nf1ci)
for n→`. In this case the interspike interval is modulated
periodically and the cells fire quasiperiodically.

I will not analyze whether the system undergoes a super-
or subcritical bifurcation. Simulations show for excitatory
networks of any size that close to the transition point that the
system stays close to the asynchronous state. Thus we can
assume that there is a supercritical bifurcation. We have to
determine whether it is a supercritical Hopf bifurcation or a
supercritical pitchfork bifurcation.

So to understand why in a two-unit network the partially
synchronized state is periodic, while it is quasiperiodic in a
three-unit network, we have to show why at the critical value
in a two-cell network one of the eigenvalues goes through 1,
while this does not happen in a network with three units.

We will first analyze a two-unit network. In the asynchro-
nous state cell 1 fires at timest5nT and cell 2 at
t5(n11/2)T. The period is given by

X0~12e2T!1ge2TE
0

T

dtetET~ t2T/2!51. ~4.3!

The coupling strength is chosen small enough so that the rate
of the units does not increase without bound. If we start the
units in antiphase, but with a slightly smaller~or larger! pe-
riod than the period found in Eq.~4.3!, the network should
evolve to to a state with the rate given by Eq.~4.3!. This will
happen only if

]

]T Fx0~12e2T!1ge2TE
0

T

dtet(
n

Es„t1~n21/2!T…G,0

~4.4!

or

X0211gET~2T/2!1ge2T(
n

~n21/2!

3E
0

T

dtetĖs„t1~n21/2!T…,0. ~4.5!

Here I have usedĖ to denotedE/dt.
When the system is perturbed the units fire at times

t5@n1( i21)/2#T1dn,i . The perturbation results in a
change in the coupling functionsEi . To lowest order in
dn,i , E1 changes to

E1~ t !5ET~ t2T/2!2(
n

dn,2Ės„t2~n11/2!T…. ~4.6!

For E2 one finds an analogous expression. Setting
x1(nT1dn,1)50 one finds
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x1„~n11!T1dn11,1…

5X0~12e2T2dn11,11dn,1!1ge2T2dn11,11dn,1

3E
0

T1dn11,12dn,1
dtetE1~ t1nT1dn,1!. ~4.7!

By assumptionx1„(n11)T1dn11,1…51. Therefore, to low-
est order indn,i

~dn11,12dn,1!FX0e
2T2ge2TE

0

T

dtetETS t2 T

2D
1gETS 2

T

2D G1dn,1Fge2TE
0

T

dtetĖTS t2 T

2D G
5ge2T(

m
dm,2E

0

T

dtetĖs„t1~n2m2 1
2 !T…. ~4.8!

A similar equation hold fordn11,2.
Solutions of these equations can be written in the form

dn,i5lnd i . The state is stable if for every solutionulu,1 or
l51, andd15d2. To make the set of consistency equations
more transparent we introduce variablesC2(l), defined as

C2~l!5~l21!FX0211gETS 2
T

2D G
1ge2TE

0

T

dtetĖTS t2 T

2D , ~4.9!

andS(l,f) defined as

S~l,f!5ge2T(
n

l2nE
0

T

dtetĖs„t1~n2f!T….

~4.10!

With these two variables the consistency equations can be
written as

C2~l!d15S~l, 12 !d2 , C2~l!d25S~l, 12 !ld1 .
~4.11!

These equations have two sets of solutions, one with
d25Ald1 and C(l)5AlS(l,1/2) and one with
d252Ald1 andC(l)52AlS(l,1/2). Here we useAl to
denote the square root of the~possibly complex! l with ar-
gument greater than2p/2 and less than or equal top/2.
Since

C2~1!5ge2TE
0

T

dtetĖTS t2 T

2D5SS 1,T2D , ~4.12!

the first set always has a solutionl51. In this case
d15d2, so this is the solution in which both oscillators fire a
time d1 later but still in antisynchrony. This is the transla-
tionally invariant solution. The antisynchronous state is un-
stable if there are other solutions withulu>1. The network
will continue to fire periodically if, fora slightly larger than
acr , there is a solution withl511e, with 0,e!1. There
cannot be such a solution withd25Ald1 since

]

]l
@C2~l!2AlS~l,1/2!#l51

5X0211gET~2T/2!2ge2T(
n

~n21/2!

3E
0

T

dtetĖs„t1~n21/2!T…. ~4.13!

According to Eq. ~4.5!, this is always negative, so
C2(11e)ÞA(11e)S(11e,1/2) for small e. If there is a
solution withl511e for a just past the critical point, this
has to be a solution withd252A(11e)d1. Thus, at
a5acr there is a solution withC2(1)52S(1,1/2) or
S(1,1/2)50. In @8# it was shown that the bifurcation does
indeed occur at the value ofa for whichS(1,1/2)50. There
it was also shown that fora5acr1da, with 0,da!1 there
is a solution withl511e.1. Sincel is real at the point
where the antisynchronous state becomes unstable, the sys-
tem will evolve to a state with dn,1→D1 and
dn,2→D2ÞD1. In this state the cells still fire periodically.

To study the stability of the asynchronous state in a three-
cell network we assume that celli , with i51,2,3, fires at
times t5@n1( i21)/2#T1dn,i , with dn,i small. Requiring
that thedn,i ’s are consistent leads, fordn,i5lnd i , to the
equations

C3~l!d15
1

2
@S~l, 13 !d21S~l, 23 !d3#,

C3~l!d25
1

2
@S~l, 13 !d31S~l, 23 !ld1#,

C3~l!d35
1

2
@S~l, 13 !ld11S~l, 23 !ld2#, ~4.14!

with C3(l) defined as

C3~l!5~l21!HX0211
g

2 FETS 2
1

TD1ETS 2
2

3
TD G J

1
g

2
e2TE

0

T

dtetF ĖTS t2 1

3
TD1ĖTS t2 2

3
TD G .

~4.15!

S(l,f) is defined as above. The consistency equations
~4.14! have three sets of solutions. If we definel1/3 as the
cube root ofl for which the argument is between2p/3
and p/3, these sets have solutions withd35l1/3e2kp i /3

d25(l1/3)2e4kp i /3d1 and C3(l)5@l1/3e2kp i /3S(l,1/3)
1(l1/3)2e4kp i /3S(l,2/3!#/2, with k equal to 0 for the first set,
1 for the second set, and 2 for the last set. A solution in the
second set withl5l0 has a complex-conjugate solution in
the third set withl5l̄0.

SinceC3(1)5@S(1,1/3)1S(1,2/3)#/2 the first set has a
solution with l51 and d15d25d3, corresponding to the
asynchronous solution that is translated in time. Analogous
to the two-unit network one can show that there is no solu-
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tion with l511e, with d35l1/3d25(l1/3)2d1 for
a5acr1da. The asynchronous solution can bifurcate in the
same manner as the antisynchronous solution in a two-cell
network if for somea the second and third sets have
solutions withl51. The second and third sets havel51
as a solution if S(1,1/3)1S(1,2/3)5e2p i /3S(1,1/3)
1e4p i /3S(1,2/3) or, equivalently, S(1,1/3)50 and
S(1,2/3)50. But these two integrals are generally not 0 for
the same value ofa. Therefore ifa is increased there is no
critical valueacr at which the second and third sets of solu-
tions will give an eigenvaluel51.

Therefore, beyond this critical value we will not have a
real eigenvaluel511e, but instead two eigenvalues
l5(11e)e6 ic. Since these eigenvalues are complex, the
stable state past the transition point will be very different.
For a5acr1da, with 0,da!1, the displacement in the
time at which the cell k fires dn,k will evolve to
dn,k→Re(e[nc1(k21)p/3] iD) for some ~complex! value of
D. The interspike intervaltn between two consecutive firings
of the first cell is given by

tn5T1dn,12dn21,15T1Acos~nc1c0!, ~4.16!

with A5uD(eic21)u. So for each n the pair
(tn21 ,tn)5„T1Acos@(n21)c1c0#,T1Acos(nc1c0)… lies
on the ellipse g:u°„T1Acos(u2c),T1Acos(u)…, with
0<u,2p. The interspike interval varies periodically, show-
ing that the oscillators fire quasiperiodically. In the plot of
tn againsttn21 in Fig. 2~b! the points do not lie on an ellipse
as prediced by the linearized theory. This is not surprising
sincea is quite far from the critical value, so that higher-
order terms indn,i have to be taken into account.

Let us summarize these results. In a two-unit network the
antisynchronous state shows a bifurcation, with one of the
eigenvalues going through 1, for the value ofa at which a
single conditionS(1,1/2)50 is met. Since this eigenvalue is
real the oscillators continue to fire periodically past the bi-
furcation point. In a three-cell network the eigenvalue of the
mode that becomes unstable is equal to 1 only if, for the
same a two conditions are satisfied:S(1,1/3)50 and
S(1,2/3)50. In general, this will not be the case and there
will be a bifurcation with complex eigenvalues for the modes
that become unstable. This leads to quasiperiodically firing
in the partially synchronized state.

One can do the same analysis for networks with four or
more units. Then one will also find that at least two condi-
tions have to be met for the samea to have an eigenvalue
l51 at the bifurcation point. As in three cell networks both
conditions will generally not be satisfied for the samea and
the eigenvalues will be complex, so that the cells will fire
quasiperiodically past the bifurcation point. So in contrast to
two-oscillator networks, networks with three or more units
will have partially synchronized states in which the cells fire
quasiperiodically.

This analysis is confirmed by simulations with networks
of 4–7 units. In Fig. 3 the interspike intervaltn is plotted
against the previous interspike intervaltn21 for networks
with 4–7 oscillators. All other parameters are as in Fig. 2. In
a three-unit network the point (tn21 ,tn) traced out a curve
that consisted of three loops. In a four-cell network a four-
loop curve is formed, but three of these loops are much

smaller than the fourth loop. For networks with five units,
the small loops become even smaller and vanish as the num-
ber of units in the network is increased. For larger networks
the points (tn21 ,tn) lie on a curve that consists of a single
curve.@See also Fig. 7~b!.#

The fact that the plot oftn againsttn21 becomes ‘‘sim-
pler’’ as N is increased suggests that the behavior of the
network in the large-N limit is simpler than the behavior of
networks with a few oscillators. In Secs. V–VIII we will
study large excitatory networks.

V. LARGE ASYNCHRONOUS NETWORKS

In a previous paper@7# we studied the asynchronous state
in the large-N limit. Here I will briefly summarize the meth-
ods and findings relevant for the study of networks with
parameter values for which the asynchronous state is not
stable.

For large networks the asynchronous state is characterized
by a coupling variableE that is constantE(t)5E0. If in this
state the oscillators fire with a frequencyR, it follows from
Eq. ~2.3! thatE05R. With E(t) constant the rateR can be
calculated from Eq.~2.1!. Combining these two equations,
we find thatE0 has to satisfy

1

E0
5E

0

1 dx

F~x!1gE0
. ~5.1!

For continuousF.0 this equation always has a solution for
g,1.

For the analysis of the asynchronous state it is convenient
to change variables fromxi to a phase variable

yi5E
0

xi E0dx

F~x!1E0
, ~5.2!

FIG. 3. Interspike intervaltn plotted against the previous inter-
spike intervaltn21 in networks with four to seven oscillators. For
the four-call network the points lie on a curve that has four loops,
three small loops and one large one. As the number of cells is
increased, the small loops shrink, leaving only a single loop in
larger networks.
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which ranges from 0 to 1 and satisfies the equation

dyi
dt

5E01G~yi !e~ t !, ~5.3!

where

G~y!5
gE0

F~x!1gE0
, e~ t !5E~ t !2E0 . ~5.4!

The state of the full population is described by a density
function r(y,t) and fluxJ(y,t) defined by

r~y,t !5
1

N(
i

d„y2yi~ t !…,

J~y,t !5@E01G~y!e~ t !#r~y,t !. ~5.5!

These satisfy the continuity equation

]

]t
r~y,t !52

]

]y
J~y,t ! ~5.6!

for 0,y,1 and the boundary condition

J~0,t !5J~1,t !. ~5.7!

The flux thoughx51, J(1,t), is the population firing rate.
The asynchronous solution is given byr(y,t)51 and

J(y,t)5E0. To determine the stability of this solution one
expands around it, writing

J~y,t !5E01 j ~y,t ! ~5.8!

and using Eq.~5.5! to expressr in terms of j and e. The
stability against small fluctuations is examined by expanding
r to first order in j and e. In this approximation the conti-
nuity equation~5.6! becomes

] j

]t
5G~y!

de

dt
2E0

] j

]y
. ~5.9!

With the fluctuation in the firing ratej (1,t) we can rewrite
Eq. ~2.3! for the coupling variablee as

S ddt1a D 2e~ t !5a2 j ~1,t !. ~5.10!

Solutions of the linearized equations~5.9! and ~5.10! will
have time dependence exp(lt). Using this we can calculate
the eigenvalue spectrum@11#. ~References@12,2,13# use
similar methods.! With Eq. ~5.9! j (y,t) can be written as

j ~y,t !5
e~ t !l

E0
F E

0

y

dy8G~y8!ely8/E01ClGe2ly/E0.

~5.11!

Cl is determined by the boundary condition Eq.~5.7!

Cl5~el/E021!21E
0

1

dyG~y!ely/E0. ~5.12!

By substituting this into Eq.~5.10! we have that the eigen-
valuesl have to satisfy the eigenvalue equation

E0~l1a!2~el/E021!5a2lE
0

1

dyG~y!ely/E0.

~5.13!

This eigenvalue equation has infinitely many solutions. In
limiting cases, for example weak coupling, the eigenvalues
can be determined by perturbation expansion@7#. Away from
these limits the eigenvalues have to be determined numeri-
cally.

For small coupling there is one doubly degenerate eigen-
value l'2a that determines the stability of the network
against fluctuations in the firing rate of the whole network.
The other eigenvalues are approximated byln'2pni/E0
and have eigenfunctionsj n(y)'Cnexp(2pny). These eigen-
values determine the stability of the network against the
modes of fluctuation that tend to synchronize the oscillators
into unu different clusters.

For excitatory coupling the asynchronous state is never
stable ifF(1).F(0). If dF/dx,0 there is a critical value
acr for the coupling rate constant so that fora,acr the asyn-
chronous state is stable, while the asynchronous state is un-
stable fora.acr . At the bifurcation pointa5acr the two
eigenvaluesl1 andl21 are purely imaginary. All other ei-
genvalues have a negative real part.

For inhibitory couplingg,0, the asynchronous state is
always unstable ifdF/dx,0. For smalla all complex ei-
genvalues have a positive real part. Asa is increased the real
part of the two eigenvaluesl1 andl21 change sign. As the
coupling time constant is decreased further additional modes
become stable.

For inhibitory coupling the higher modes are all unstable.
If the system starts close to the asynchronous state, the
higher modes will initially grow exponentially. So the final
state of the system can depend on the initial conditions@14#.
In Sec. IX I will show that this is indeed the case. In contrast,
for excitatory coupling the higher modes are stable, suggest-
ing that the final state of the system does not depend on the
details of the initial conditions. In the next section we will
see that this is also true.

VI. PARTIAL SYNCHRONY IN LARGE NETWORKS

In the preceding section we saw that for large excitatory
networks, the asynchronous state switches from stable for
a smaller than some critical valueacr to unstable fora
larger than this critical value. Two complex-conjugate eigen-
values for perturbations of the asynchronous state have a real
part that goes from negative fora,acr to positive for
a.acr . These eigenvalues have a nonzero imaginary part
and the real part of the eigenvalues Re(l) has a nonzero
derivative with respecta i . All other eigenvalues have
strictly negative real parts fora close to the critical point
acr . At a5acr the system undergoes a Hopf bifurcation
@15,16#.

Hopf bifurcation theory tells us that for a parametera that
induces a bifurcation, there is a periodic solution for param-
eters in the neighborhood of the bifurcation point. The am-
plitude of this periodic solution vanishes when the parameter
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reaches the critical point. We can have one of two kinds of
Hopf bifurcations: ~i! the subcritical Hopf bifurcation, in
which case there is aunstable periodic solution for
a,acr , or ~ii ! the supercritical Hopf bifurcation with a
stableperiodic solution fora.acr .

If the Hopf bifurcation is supercritical, the behavior of the
network changes continuously when the rate constant
changes past the critical value. If the Hopf bifurcation is
subcritical the change is discontinuous. Since for excitatory
coupling a system with two oscillators has a stable firing
pattern with the cells firing nearly antisynchronously just
past the bifurcation point, we expect a large network also to
change continuously. Thus, in a large network we expect a
supercritical Hopf bifurcation.

I investigated the behavior of the system for parameter
values at which the asynchronous state is unstable, using
computer simulations with 100 oscillators. The units satisfy
Eq. ~2.1! with F(x)5X02x. At t50 the oscillators were
given random valuesxi . The self-coupling was not removed,
E satisfies Eq.~2.3! and is initialized atE50. The firing rate
for a finite population ofN oscillators is estimated in the
following manner. Suppose a cell fires at timet i , the last cell
that fired before this cell fired att i21, and the next one will
fire at t i11. Then there is a time interval (t i112t i21)/2
around timet i in which one cell fires. We take the firing rate
J(1,t) at time t i to be

J~1,t i !5
2

N~ t i112t i21!
. ~6.1!

In the simulations we let the system evolve fromt50 to
t545 000, to make sure that all the transients have died out.
We plot the firing rate for the next ten time units. Figure 4
shows the firing rate for systems withX051.3 andg50.4.
The firing rate is shown for different values ofa. Using
these parameters, the eigenvalue Eq.~5.13! tells us that the
asynchronous state is unstable fora.acr58.3460.01. For
a,acr the firing rate is indeed constant. Fora just larger
thanacr the firing rate has a small periodic perturbation. If
one increasesa the firing rate oscillates with an increasing
amplitude and the system becomes more synchronized. This
gradual growth the amplitude of a periodic firing rate is ex-
actly what one expects from a supercritical Hopf bifurcation.

To quantify the level of synchronization we introduce an
order parameterm(t) defined as

m~ t !5U E
0

1

dyr(y,t)e2p iyU. ~6.2!

If the system is in the asynchronous state@r(y,t)51# the
order parameter is zero, while for a completely synchronized
system the order parameter equals one. Fora.acr we
have a partially synchronized system that fires periodi-
cally. If J(1,t) is periodic,r andJ are periodic for all values
of y, so r can be written asr(y,t)5(krk(y)exp(ikvt)
for some value of v. With the definition
rk,n5*0

1dyrk(y)exp(22pniy), the order-parameter can be
written as

m~ t !5U(
k

rk,21e
ikvtU. ~6.3!

In generalm will vary periodically for a partially synchro-
nized system. We characterize the level of synchronization
of the system bym̄, the temporal average ofm(t). We de-
terminedm̄ as function ofa for a system with parameters as
in Fig. 4. In Fig. 5m̄ is plotted against 1/a. Asa is increased
past the transition point,m̄ increases rapidly. Thenm̄ levels
off andm̄ goes to 1 asymptotically asa goes to infinity. The
system thus reaches total synchronization asymptotically.

The simulations were repeated with different random ini-
tial conditions, for different values ofa up to 8 times. Up to

FIG. 4. Firing rateJ(1,t) for different coupling time constants
for a system of 100 oscillators withX051.3 and g50.4. For
a58.0 and 8.33 the asynchronous state is stable and the firing rate
is constant. Fora58.35 the asynchronous state is no longer stable
and a small periodic perturbation appears. Fora58.5 anda59.0
the amplitude of the oscillations in the firing rate increases.

FIG. 5. Order parameterm̄ that characterizes the level of syn-
chronization as a function of 1/a for a system withN5100,
X051.3, andg50.4. Fora larger than the critical value,m̄50 and
the system is in the asynchronous state. Past the transition point
m̄ increases and the level of synchronization in the system in-
creases. As 1/a reaches 0,m̄ goes to 1. The system goes asymp-
totically to complete synchronization for increasinga.
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a phase factor these gave the same firing rates. Simulations
with X051.2 andX051.5 gave analogous results, as did
simulations for different values ofg.

VII. CLOSE TO THE TRANSITION POINT

Finding the stable periodic solution is not easy. For pa-
rameters close to the bifurcation point, we can use the fact
that this solution stays close to the steady-state solution
J5E0 and write the solution as an expansion inj ande. In
this section I will describe howj and e depend onda for
a5acr1da, with 0,da!1.

It is clear from Fig. 5 that the order parameterm̄ and
therefore j and e are not analytical functions ofa at
a5acr and hence their dependence ona cannot be written
as a Taylor expansion arounda5acr . We will show that,
analogous to many physical phenomena near a phase transi-
tion @17#, j and e can, fora5acr1da.acr , be written as
an expansion inda with a critical exponentc

j ~y,t !5~da!c@J~y,t !1J8~y,t !~da!d1•••# ~7.1!

and

e~ t !5~da!c@E~ t !1E8~ t !~da!d1•••#, ~7.2!

with d.0. Since m̄ vanishes asda goes to zero, while
dm̄/da diverges, the critical exponentc must between 0 and
1.

In Appendix A it is shown thatj (y,t) can be written as
j (y,t)5(nj n(y)exp(invt), where

j n~y!5~da! unu/2@ j n
0~y!1~da!1/2j n

1~y!1•••# ~7.3!

for nÞ0 with j n
k independent ofda and j 0(y) is of order

da. The angular frequencyv is to lowest order given by the
absolute value of imaginary part of the eigenvalues (l61)
whose real part goes through zero at the critical point. Simu-
lar results hold fore(t).

Thus, close to the transition point the average firing rate
J(1,t) will oscillate periodically with an angular frequency
that is close touIm(l61)u, while the amplitude of the oscil-
lations will grow as (da)1/2 asa exceeds the critical value
acr by an amountda. Therefore the critical exponent is
c51/2.

It should be noted that in the derivation of the critical
exponent in the Appendix I did not make any special as-
sumptions about the functionG. Therefore the procedure out-
lined above will work for any model that has the following
properties.~i! The model can be reduced to a model in which
the state of celli can be described by a variableyi that obeys
Eq. ~5.3! for some functionbG. ~ii ! The model has a stable
asynchronous state for an a region of coupling rate constants.
~iii ! The model has a stable static solution that has a super-
critical Hopf bifurcation at the edge of that region.

Whether the asynchronous state is stable for a given func-
tion G(y) can be determined by solving the eigenvalue Eq.
~5.13!. The eigenvalues of the modes that become unstable at
the edge of the region of stability will determine whether or
not there is a Hopf bifurcation at this edge. But it will not tell
you whether this Hopf bifurcation is super- or subcritical.
The procedure outlined in the Appendix for the determina-

tion of the critical exponent in a supercritical Hopf bifurca-
tion can actually be used to determine whether the bifurca-
tion is sub- or supercritical. If the bifurcation is subcritical,
this procedure will not work. Specifically Eq.~16! will give
a negativevalue fore21e15ue1u2 if the Hopf bifurcation is
subcritical. So to determine whether the system has a sub- or
supercritical Hopf bifurcation one can use the procedure out-
lined above to calculatede1e21. If e1e21 is positive the
bifurcation is supercritical and just past the critical point
there is a periodic firing pattern that is close to the asynchro-
nous firing pattern. Ife1e21 is negative the bifurcation is
subcritical and the firing pattern changes discontinuously at
the critical point.

The critical exponents can also be determined using
numerical simulations. As before I used a system consisting
of 100 cells, with F(x)5X02x. The parameters were
the same as in Sec. VI. For values ofa ranging from 8.25
to 8.60 the order parameterm̄ was determined. The system
started att50 with random initial values forxi . We as-
sumed that att545 000 the system had reached its steady
state. The order parameter was determined by calculating
m5uN21( iexp(2piyi)u every time one of the cells fired for
the next 200 time units and averaging these values.

For a5acr1da, with 0,da!1, j (y,t) ande(t) are to
lowest order proportional to (da)1/2. Thereforedr5r21 is
of order (da)1/2, so thatm̄ is proportional to (da)1/2. Thus if
m̄2 is plotted againsta, one should theoretically get 0 for
a,acr and a straight line with positive slope through
(acr,0) for a.acr .

Figure 6 shows the results for our simulations. Not too
close to the phase transition the simulation does agree with
the theory. Nearacr the simulation does not give the pre-
dicted result. This is not surprising since at the critical value
the linearized theory has an eigenvalue with a vanishing real
part, so that the relaxation time goes to infinity as one ap-
proachesacr . Thus, even att545 000 the simulations will
not have lost all initial transients.

VIII. INDIVIDUAL CELLS IN THE PERIODIC SOLUTION

For a.acr , the stable solutions forr, J, andE are peri-
odic. It would be natural to guess that individual cells also
behave periodically. Yet one can show that individual oscil-

FIG. 6. m̄2 as a function ofa. A linear graph fora.acr indi-
cates a critical exponent of 1/2. The smooth change in slope at
a5acr is caused by the transients that have not yet died out due to
the divergence of the relaxation time at the transition point.

5530 54C. van VREESWIJK



lators cannot fire periodically in this solution. It is instructive
to prove this first in the special case whereF(x) is given by
F(x)5X02x. After that I will show that it is true in other
cases also, at least close to the transition point.

Suppose that all units fire periodically with periodT.
ThenJ(1,t)5J(1,t1T) andE(t)5E(t1T). In that case ei-
ther the cells are all synchronized in a finite number of
groups orE(t) is constant, at least for a part of the period.
Namely, if we assume that the cells are not synchronized in
a finite number of groups, there is a time interval^t0 ,t1&,
with 0<t0,t1<T in which J(1,t)Þ0. So that for everyt in
this interval there is a celli with xi(t)50. For this cell the
state variable a timeT later is given by

xi~ t1T!5X0~12e2T!1ge2TE
0

T

dt8et8E~ t1t8!51,

~8.1!

since the cell fires with periodT. We can rewrite this as

E
0

T

dt8et8E~ t1t8!5g21
„eT2X0~e

T21!…. ~8.2!

The right-hand side of this equation is independent oft. So if
we take the derivative of the left-hand side with respect to
t we should have 0. But using partial integration and the
periodicity ofE, we can also write

]

]tE0
T

dt8et8E~ t1t8!

5E
0

T

dt8et8E8~ t1t8!

5eTE~ t1T!2E~ t !2E
0

T

dt8et8E~ t1t8!

5~eT21!E~ t !2g21
„eT2X0~e

T21!…. ~8.3!

Setting this equal to 0 we have, fort0,t,t1,

E~ t !5g21S 1

12e2T 2X0D , ~8.4!

independent oft.
Since with excitatory coupling the system undergoes a

supercritical Hopf bifurcation ifa is increased past the criti-
cal valueacr , close to the transition point,J(1,t) will differ
only a small amount fromE0 and thereforeJ(1,t).0 for all
t. Thus it would follow that if the cells fire periodically,
E(t) is constant. But ifE is constant,J(1,t) has to be con-
stant also, and this is in contradiction with the theory. There-
fore, close to the transition point, the cellsdo notfire peri-
odically, even though macroscopic quantitiesr, J, and E
behave periodically. The simulations indecate that for any
finite a, J(1,t).0 for all t, so for anya.acr the units do
not fire periodically.

That the oscillators do not fire periodically for anyF.0
with dF/dx,0 can be seen in the following way. If the
self-coupling term is not removed, so thatEi(t)5E(t) for all
i , Eq. ~2.1! implies that all other cells fire exactly once be-

tween two consecutive firings of one cell. Assume that cell
fires at time t and fires again at timet1 f (t). Since
* t0
t1dt8J(1,t8) is the fraction of units that fire between time

t0 and timet1, f (t) satisfies

E
t

t1 f ~ t !
dt8J~1,t8!51. ~8.5!

If individual neurons fire periodically with periodT,
f (t)5T. But in this caseJ(1,t) is also periodic with period
T. So the integral ofJ(1,t) over one period should be 1. For
a synaptic rate constant close to the transition point
a5acr1da, we have to lowest order
J(1,t)5E01 j 1

(0)Adacos(vcrt1f), so thatT52p/vcr and

E
t

t1T

dt8J~1,t8!5
2pE0

vcr
. ~8.6!

Thus, if the cells fire periodicallyvcr has to satisfy
vcr52pE0. Therefore at the critical point there should be
eigenvaluesl56vcri562pE0i . Substituting this in the ei-
genvalue Eq.~5.13! one finds that this is equivalent to
*0
1dyG(y)exp(62pyi)50. But if dF/dx,0, dG/dy.0, so
that

E
0

1

dyG~y!sin~2py!5E
0

1/2

dy@G~y!2G~12y!#sin~2py!

,0. ~8.7!

Therefore*0
1dyG(y)exp(2pyi)Þ0, but has a negative imagi-

nary part. So close to the critical pointJ(1,t) cannot satisfy
* t
t1Tdt8J(1,t8)51 and therefore the cells do not fire periodi-
cally.

This is also in agreement with numerical simulations. For
example, with F(x)51.32x and g50.4 we have, for
a5acr , E051.221 andvcr57.363, so 2pE0 /vcr51.042.
Thus, during one period the average cell fires a little more
than 1.04 times, fora just larger thanacr . In the simulations
discussed in Sec. VI I found that asa is increased and the
system becomes more synchronized,* t

t1Tdt8J(1,t8) de-
creases asymptotically to 1 with increasinga.

Figure 7~a! shows the times at which one of the neurons
fires after the network has settled in partially synchronized
state. The data in this figure are taken from a simulation with
a59.0, F(x)51.32x, and g50.4. The top of the figure
shows the network firing rateJ(1,t); below that the time at
which one of the cells fires is indicated. The time at which
the cell fires shifts a little bit relative to the peak in the
network firing rate each time the cell fires. The cell fires
slightly faster than the network rate peaks. The neuron does
not fire exactly periodically; for example, aroundt513 the
interspike interval is shorter than aroundt52. Since the neu-
rons do not fire exactly periodically, the time between the
firing of the neuron shown here and the next one can vary;
this interval is short when the firing coincides with a peak in
the network firing rate and longer when the firing rate is low.

If the system has settled in a periodic firing pattern with
* t
t1TdtJ(1,t)Þ1 the time between two consecutive firings of
one neuron, the interspike intervaltn , can take any value
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between some valuestn,min and tn,max, determined by Eq.
~8.5!. If after some randomly chosen timet we record the
time between the next two spikes for one of the neurons, we
will have some probabilityP(tn)dtn to record an interval
between tn and tn1dtn , with P(tn)Þ0 for
tn,min<tn,tn,max. One can show thatP(tn)→` for
tn→tn,max and tn→tn,min .

In Fig. 7~b! the probability distribution of the interspike
interval tn is plotted for the same simulation used in Fig.
7~a!. The distribution has two local maxima. There is a large
maximum at tn5tn,max and a much smaller one at
tn5tn,min . The probability distribution was determined by
measuring 2000 consecutive interspike intervals and binning
these in bins of size (tn,max2tn,min)/50. Notice that this gives
a finite value forP(tn,max) andP(tn,min). This does not con-
tradict thatP(t)→` for t→tn,max,tn,min , since whileP(tn)
diverges at these values the integral ofP over a bin of finite
size converges.

The shape of the interspike interval distribution in this
partially synchronized system is clearly different from that of
the interspike interval distribution of oscillators that are in-
completely synchronized due to noise, in a network that
would synchronize completely in the absence of noise. In
such a network one expects an interspike interval distribution
with a peak for some intermediate value of the interval and
tails that fall off at both ends.

If an oscillator fires at some timetn21, the next time
this cell fires tn5tn211tn21, with tn215 f (tn21) deter-
mined by Eq.~8.5!. The next time after that this cell fires
at time tn115tn1tn , with tn given by tn5 f (tn)
5 f „tn211 f (tn21)…. Thus, if one plotstn againsttn21 for
any oscillator, this point will be on the curve
g:t°( f (t), f „t1 f (t)…). SinceJ(1,t) is periodic with period

T, f (t) is periodic with periodT. Thereforeg(t1T)5g(t)
and the curveg traces a closed loop.

Figure 7~c! shows a plot oftn againsttn21 for the 2000
time intervals used to determineP above. All points are
indeed on a closed curve as expected.

As we have seen, the coupling functionE is periodic, but
individual oscillators do not fire with an average frequency
that is equal to the frequency with whichE varies, or a
simple fraction of that frequency. We therefore expect the
cells to behave quasiperiodically. This quasiperiodic behav-
ior is indeed consistent with the firing pattern observed in
Fig. 7~c!. Since the curveg traces a single loop, we can
conclude that the cells fire quasi-periodically with their state
characterized by two frequencies.

Is it surprising that in the partially synchronized state in-
dividual units behave quasiperiodically, while the macro-
scopic quantities vary periodically with time? Let us com-
pare this with the asynchronous state. In the asynchronous
state the units behave periodically. There is a functionf (x)
with period 2p so that the state variablesxi can be described
by

xi~ t !5 f „v~ t2t i !… ~8.8!

for somev. The values oft i are distributed in such a way
that the density

r~x,t ![N21(
i

d~x2 f „v~ t2t i !…! ~8.9!

is independent of time. In other words, the values oft i are
uniformly destributed between 0 and 2/p/v.

In the partially synchronized state individual oscillators
behave quasiperiodically. There is a functionF(x,y) that is
periodic both inx andy, with period 2p, so that for the state
variablexi of oscillator i we can write, ift is large enough,

xi~ t !5F„v1~ t2t i !,v2~ t2t i !…, ~8.10!

with appropriately chosenv1 andv2. Remarkable about the
network is that the values oft i are distributed in such a way
that the density r(x,t)5N21( id(x2F„v1(t2t i),v2(t
2t i)…) is periodic rather than quasiperiodic in time. In sum-
ming the contributions of all units to the density one of the
periods that determine the quasiperiodic behavior of the in-
dividual cells is averaged out. For example, the values oft i
could be uniformly distributed between 0 and 2p/v1.

So both in the asynchronous state and in the partially
synchronized state one needs one more frequency to describe
the states of the individual units than is needed to describe
variablesr, J, andE. In both states the time offsetst i are
distributed so that they cancel this extra frequency in the
macroscopic variables.

IX. INHIBITION

We now turn our attention to large networks of oscillators
with inhibitory coupling. In a system with two oscillators the
synchronous state is always stable, while the antisynchro-
nous state is unstable for slow coupling (a small! and stable
for fast coupling (a large!. This leads one to suspect that in
large networks there is always a locally stable synchronous

FIG. 7. ~a! Network firing rate and the spike times of one of the
neurons. The fire rate~upper trace! varies periodically. The times
when the neuron fires, indicated below, slowly shifts with respect to
the peak of the firing rate. The neuron does not fire periodically.~b!
The probability distribution of the interspike intervaltn has its
maximum values at the extreme values oftn . The largest possible
value tn can take is less than the periodT with which the network
oscillates.~c! Interspike intervaltn plotted against the previous in-
terspike intervaltn21 of the same cell.
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solution and that for faster coupling there is a stable state in
which the oscillators are synchronized in two or more clus-
ters.

That the completely synchronized state is locally stable
can be shown as follows. In the synchronized state all oscil-
lators fire a timet5nT. The state variablexi is the same for
all cells; xi(t)5xnet(t) andxnet satisfies

xnet
dt

5F~xnet!1gET~ t !, ~9.1!

with F85dF/dx,0, g,0, andET(t)5(nEs(t1nT). The
cells fire att50 so thatxnet(0)50. Solving Eq.~9.1! one
finds xnet(t) for 0,t,T and the periodT is determined by
xnet(T)51.

Suppose that att50 oscillator i is perturbed so that its
state variable is shifted toxi(0)5j, with uju!1. The other
cells are not perturbed so that in the large-N limit the cou-
pling variable E will be unperturbed for t.0. Thus
xj (t)5xnet(t) for jÞ i . Let xi(t) be given by
xi(t)5xnet(t)1j(t) with j(0)5j. The system is stable for
small single-cell perturbations ifuj(T)u,uj(0)u for all
uj(0)u!1. We will only consider the casej.0 since show-
ing stability for the casej,0 is completely analogous.

If j.0 oscillator i will reach the thresholdx51 before
the rest of the network. The network reaches the threshold at
time t5T, and celli at t5T8,T. For 0,t,T8, j obeys to
lowest order

dj

dt
5F~xnet1j!2F~xnet!5F8~xnet!j, ~9.2!

here we have usedF8 for dF/dx. To lowest orderj(T8)
satisfies

j~T8!5j~0!expS E
0

T8
dtF8„xnet~ t !…D

5j~0!expS E
0

T

dtF8„xnet~ t !…D . ~9.3!

Sincexnet(T)51 anddxnet(T)/dt5F(1)1gET(T) we also
have to lowest order

j~T8!512xnet~T8!5~T2T8!@F~1!1gET~T!#. ~9.4!

ThusT2T8 satisfies

T2T85j~0!
exp~*0

TdtF8„xnet~ t !…!

F~1!1gET~T!
. ~9.5!

At time T8 the state variablexi is reset to zero
xi(T81)50, so at timeT

j~T!5xi~T!5~T2T8!@F~0!1gET~T!#

5j~0!
F~0!1gET~T!

F~1!1gET~T!
expS E

0

T

dtF8~xnet! D .
~9.6!

To show that the synchronous state is stable we have to
prove that

E
0

T

dtF8„xnet~ t !…, lnS F~1!1gET~T!

F~0!1gET~T! D . ~9.7!

With ugu small enough so thatF„xnet(t)…1gET(t).0 for all
t, we can write

E
0

T

dtF8~xnet!5E
0

1

dx
F8~x!

F~x!1gET„t~x!…
. ~9.8!

For Es given by ana function ET(t).ET(T) for 0,t,T.
Sinceg,0 andF8,0 Eq. ~9.8! is bounded by

E
0

T

dtF8„xnet~ t !…,E
0

1

dx
F8~x!

F~x!1gET~T!

5 lnS F~1!1gET~T!

F~0!1gET~T! D . ~9.9!

If the coupling is stronger, so thatdxnet/dt<0 on some in-
terval t0<t<t1, with 0<t0,t1,T, one can find at2 and
t3 so that dxnet/dt.0 for 0<t<t2 and t3<t<T, and
xnet(t2)5xnet(t3). SinceF8,0 we can write

E
0

T

dtF8~xnet!,E
0

t2
dtF8~xnet!1E

t3

T

dtF8~xnet!

5E
0

xnet~ t2!

dx
F8~x!

F~x!1gET~ t !

1E
xnet~ t3!

1

dx
F8~x!

F~x!1gET~ t !

,E
0

1

dx
F8~x!

F~x!1gET~T!
. ~9.10!

Therefore the inequality~9.7! also holds for stronger inhibi-
tory coupling. The synchronous state is stable against small
single-oscillator perturbations.

We will now briefly outline how one analyzes the stability
of a state in which the cells are synchronized in two clusters.
The stability analysis has two components. First one assumes
that all oscillators are synchronized in two groups that fire
periodically. A fractionhA of the cells fire at timet5nT,
while a fractionhB512hA fire at time t5(n1f)T. The
coupling variableE is then

E~ t !5hAET~ t !1hBET~ t2fT!. ~9.11!

In the case whereF(x) is given byF(x)5X02x, one has for
groupA, with xA(0)50,

xA~T!5X0~12e2T!1ge2T

3E
0

T

dtet@hAET~ t !1hBET~ t2fT!#51. ~9.12!

For groupB one finds, sincexB(fT)50,
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xB„~11f!T…5X0~12e2T!1ge2T

3E
0

T

dtet@hAET~ t1fT!1hBET~ t !#51.

~9.13!

These equations always have a solution withf50 and at
least one other solution. For example, withhA51/2 there is
always a solution withf51/2. Just as in the two-oscillator
system one will find two more solutions ifa exceeds a criti-
cal value. Below this critical value the solution with
f51/2 is unstable, while above the critical valuef51/2
gives a stable solution. ForhAÞ1/2 there is also one~un-
stable! solution withfÞ0 for smalla and three solutions
with fÞ0, one of which is stable, for large values ofa.
Thus if one analyzes the system under the constraint that all
oscillators are synchronized in two groups, these groups can
fire with a fixed phase difference, if the coupling time con-
stants are small enough.

Next one can show that the two-cluster state is also stable
for small perturbations of single cells. Since this can be done
more or less analogously to the small single-oscillator per-
turbation in the completely synchronized state given above
we will not show this here.

The completely synchronous solution is always stable.
However, if one decreases the coupling time constants past
some critical value, there are also stable solutions in which
the oscillators synchronize in two clusters. One can show
that if the time constants are decreased even more, states
with three synchronized clusters also become stable. Reduc-
ing the time constants even further yields stable solutions
with even more clusters. Ifa is very large the system has a
lot of stable states. The state into which the system will
evolve will depend on the initial conditions. This is in con-
trast to a system with excitatory coupling, in which the final
state of the system is independent of the initial conditions.

I did computer simulations on a system with 100 oscilla-
tors. As before, I used model oscillators for which
F(x)51.32x. The coupling strengthg was set to
g520.4. At t50 the state variablesxi were given random
initial values between 0 and 1.E(0) and dE(0)/dt were
initially set to zero. We let the system evolve until a periodic
firing pattern was reached, making sure that all transient had
died out. Figure 8 shows the value for the state variablexi
for all cells just before one of the oscillators starts to fire, in
a simulation for whicha54.0 at a timet.10 000. To make
it easier to see the clusters, the cells were renumbered so that
x1<x2<•••<x100. The system is clearly broken up into
three different clusters with 25, 37, and 38 oscillators, re-
spectively.

I did simulations fora ranging from 1.5 to 5.0. For each
value ofa we did ten simulations, each with different initial
conditions. After the transients had died out the number of
clustersM was determined. Table I shows for each value of
a the number of times with which the system evolved into an
M -cluster state. There is clearly a trend towards a state with
a larger number of clusters asa increases.

X. DISCUSSION

In a network of integrate and fire cells, in which the cou-
pling is modeled by ana function, we find that, for excita-

tory coupling, the networks evolves to the asynchronous
state if the coupling time constants are slow enough. When
the speed of the coupling is increased, the network starts to
synchronize. For finite time constants the network does not
reach complete synchrony, even though the network consists
of identical oscillators and the system is completely noise-
less. If the network consists of more than two units, the cells
fire quasiperiodically in the partially synchronized state. In
large networks the average firing rate of the network varies
periodically in this state, even though individual cells are
quasiperiodic.

With inhibitory coupling the network synchronizes com-
pletely if the coupling is slow. With faster coupling the net-
work breaks up into two or more completely synchronized
clusters. The average number of clusters that is formed in-
creases as the coupling time constant decreases, though the
exact number of clusters that is formed depends on the initial
conditions. For a network with a large but finite number of
oscillators the number of clusters that are formed will even-
tually approach the number of cells. The final state is then

FIG. 8. State variablesxi for a simulation in a system of 100
oscillators with F(x)51.32x, g520.4, anda54.0. The cells
were renumbered so thatx1<x2<•••<x100. The state variablexi
is plotted againsti at some timet.10 000, just before one of the
clusters fires. The system is clearly broken up into three clusters.

TABLE I. Number of clustersM into which the system breaks
up for different values ofa. For each value ofa ten simulations
were performed, each with different randomly chosen initial condi-
tions. The table shows for eacha how many of these simulations
evolved into a system withM clusters. For smalla the system
always completely synchronizes (M51 for all simulations!. As a
increases the number of clusters into which the system evolves
tends to increases.

a \ M 1 2 3 4

1.5 10 0 0 0
2.0 6 4 0 0
2.5 0 9 1 0
3.0 0 10 0 0
3.5 0 4 6 0
4.0 0 2 8 0
4.5 0 1 9 0
5.0 0 1 4 5
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indistinguishable from the asynchronous state.
Thus with inhibitory coupling the system goes from com-

pletely synchronized for slow coupling to an essentially
asynchronous state for fast coupling, by the formation of an
increasing number of completely synchronized clusters. This
should be contrasted with excitatory coupling. There the net-
work is completely synchronized if the coupling is infinitely
fast and asynchronous if the time constants exceed some
critical value. The transition from a synchronous to an asyn-
chronous system is accomplished by the broadening of one
cluster rather than by breaking up into ever more clusters.

We find these properties for populations of very simple
nonlinear oscillators. An interesting question is whether this
behavior is also found in networks of more complicated os-
cillators, for example, in networks of realistic neurons. Some
studies have been done on the thalamic reticular nucleus
@9,5,10,18–20#, in which channel-based models of the neu-
rons were used. In the thalamic reticular nucleus the cells
have inhibitory coupling, either through fastGABAA or slow
GABAB synapses. These studies found that with the slow
inhibitory GABAB coupling all cells synchronize com-
pletely, while with the fastGABAA coupling the cells syn-
chronized in two or more groups. This agrees with what our
simple model predicts.

We do not know of any study that shows large popula-
tions of conductance-based model neurons behaving as our
simple network with excitarory connections. However, sys-
tems of two identical Hodgin-Huxley model neurons with
excitatory coupling fire completely asynchronously when the
coupling is slow, while they partially synchronize for faster
synapses, as we showed in Sec. III. However, if the synaptic
time constant is of the order of the spike duration, the neu-
rons completely synchronize. This leads one to expect that
large populations of Hodgkin-Huxley-type neurons with
slow excitatory synapses will evolve to the asynchronous
state, while for faster synapses the network will partially
synchronize, with individual neurons firing quasiperiodi-
cally. Large networks of these cells will probably also syn-
chronize for small but finite synaptic time constants, in con-
trast to networks of intergrate and fire neurons.
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APPENDIX A: CRITICAL EXPONENT

In this appendix the critical exponent is determined. Since
e is small, the densityr can be written as a converging series

r~y,t !5
E01 j ~y,t !

E01G~y!e~ t !

5S 11
1

E0
j ~y,t ! D (

k50

` S 2G~y!e~ t !

E0
D k. ~A1!

The solution is periodic in time, so we can writej and e

as Fourier series j (y,t)5(nj n(y)exp(invt) and e(t)
5(nenexp(invt), wherev has to be determined.

The densityr(y,t)5(nrn(y)exp(invt) can be written as

r~y,t !511
1

E0
(
n

S j n~y!2enG~y!1(
j52

`

Sn, j~y!D einvt,

~A2!

with the j th-order term inen and j n(y)

Sn, j~y!5 (
n1 , . . . ,nj
ni5n

)
k51

j21

enk@ j nj~y!2enjG~y!#S 2G~y!

E0
D j21

.

~A3!

From the continuity Eq.~5.6! it follows that

invS j n~y!2enG~y!1(
j52

`

Sn, j~y!D 52E0

d

dy
j n~y!.

~A4!

SinceSn, j (y) depends onj k(y) for all k there is no simple
solution for j n(y) for nÞ0. Only for n50 is there an ex-
plicit solution with j 0(y) constant.

For nÞ0 the j n(y)’s can be written implicitly as

j n~y!5
inv

E0
F E

0

y

dy8S enG~y8!2(
j52

`

Sn, j~y!D
3einvy8/E01CnGe2 invy/E0. ~A5!

From the boundary conditionj (0,t)5 j (1,t) it follows that

Cn5
1

einv/E021E0
1

dyS enG~y!2(
j
Sn, j~y! Deinvy/E0.

~A6!

From Eq. ~5.13! for the coupling variable one has
( inv1a)2en5a2 j n(1). So j 0(y)5e0 and

An~v,a!en52 inva2(
j
E
0

1

dySn, j~y!einvy/E0 ~A7!

for nÞ0. Here we have used

An~v,a![E0~ inv1a!2~einv/E021!

2 inva2E
0

1

dyG~y!einvy/E0. ~A8!

Since j n(y) anden vanish ifda goes to 0,j n anden will
be of order (da)cn for some positive constantcn . Since
j2n is the complex conjugate ofj n we havec2n5cn . The
simulations show thatj 1 and j21 dominate for smallda, so
we assumecn.c1[c for nÞ21,1.

With v5vcr1dv and dv→0 if da→0, we write
An(v,a) as
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An~v,a!5An~vcr ,acr!1
]An

]v
dv1

]An

]a
a1•••.

~A9!

For n51 we have from Eq.~A7!, to lowest order ofda,

FA1~vcr ,acr!1
]A1

]v
dv1

]A1

]a
daGe1

52 ivcracr
2 E

0

1

dy(
j
S1,j~y!eivcry/E0. ~A10!

It is easy to see thatSn, j5O„(da) jc… for j5unu12k ~with
k50,1,2,. . . ) andSn, j5o„(da) jc… otherwise. Therefore the
right-hand side of of Eq.~A10! is of order less than
(da)2c. But if A1(vcr ,acr)Þ0 the right-hand side is of order
(da)c. So we haveA1(vcr ,acr)50.

This is exactly the eigenvalue equation~5.13! for small
perturbations about the asynchronous solution, with
l5 ivcr . Equation ~5.13! has infinite many solutions, but
only two of theml56 ivcr are purely imaginary. Forn
Þ21,1 we therefore haveAn(vcr ,acr)Þ0.

Since forn562 the left-hand side of Eq.~A7! is of order
(da)c2, while the right-hand side is at most of order
(da)2c, c225c2>2c. Using this one next shows that
c235c3>3c, etc. Thus one shows that, fornÞ0,
cn>unuc.

We can determinee0 by observing that*0
1dyr(y,t)51.

With the continuity equation~5.6! we have, for nÞ0,
*0
1dyrn(y)5@ j n(0)2 j n(1)#/ inv50. Therefore

E
0

1

dyr0~y!511
1

E0
S e0E

0

1

dy@12G~y!#

2(
j52

` E
0

1

dyS0,j~y!D 51 ~A11!

or, sinceG(y),1,

e05S 12E
0

1

dyG~y! D 21

(
j
E
0

1

dyS0,j~y!

52S 12E
0

1

dyG~y! D 21

3H e21

E0
E
0

1

dy@ j 1~y!2e1G~y!#G~y!1
e1
E0
E
0

1

dy

3@ j21~y!2e21G~y!#G~y!J
1 ~higher order terms!. ~A12!

For j n , to the lowest order inda,

j n~y!5en
invcr

E0
S E

0

y

dy8G~y8!einvcry8/E01knD e2 invcry/E0,

~A13!

with kn determined by the boundary condition. Thus, to low-
est ordere05e1e21K0, whereK0 can be determined using
Eqs.~A12! and ~A13!.

Sincee0 is of order (da)2c anden is of order (da) unuc or
smaller, from Eq.~A7! e2 is given to lowest order by
e25e1

2K2. K2 is a complex constant that can be calculated
from Eqs.~A7! and ~A13! for n52.

We now return to Eq.~A10! for e1. The right-hand side
has only terms of the order (da)3c or higher. The terms of
order (da)3c can all be written as the product ofe21e2,
e0e1, or e21e1

2 and some constants that can be determined
using Eq.~A13!. Using the results fore0 ande2 we derived
above, one finds that the right-hand side of Eq.~A7! can be
written ase21e1

2K1, whereK1 is a complex constant.
With A1(vcr ,acr)50 we have

]A1

]v
dv1

]A1

]a
da5e21e1K1, ~A14!

with dv5v8(da)cv. The right-hand side of this equation is
of order (da)2c. If cv,1 the left-hand side is of order
(da)cv, so thatc5cv/2 andv8(]A1 /]v)5e21e1K0, while
for cv.1, the left-hand side is of orderda and therefore
c51/2 ande21e1K05]A1 /]a. But sincee21e1, da, and
v8 are all real, while]A/]v, ]A/]a, andK1 are complex,
these will in general not be valid solutions. Therefore, for the
generic case, we will havedv5v8da. In that case, with
e15e1(da)1/2 ande215e21(da)1/2,

e21e15
1

K1

]A1

]v
v81

1

K1

]A1

]a
. ~A15!

With real solutions

e21e15

ImS ]A/]a

]A/]v D
ImS K1

]A/]v D ~A16!

and

v852

ImS 1K1

]A1

]a D
ImS 1K1

]A1

]v D . ~A17!

We have shown thate61 and j61 are of order (da)1/2, while
all others are proportional toda to some higher power.
Therefore, an expansion ofj or e in da using a critical
exponentc, as in Eqs.~7.1! and ~7.2!, has 1/2 as lowest
power in da. Thus the critical exponent is 1/2. Notice that
this procedure determinese1 only up to a phase factore

if, so
that en is determined up to a factoreinf. This is to be ex-
pected since a translation of the time coordinatet→t1dt
transformsen asen→ene

invdt.
To summarize, sincej (y,t) is periodic in t, it can be

written as

j ~y,t !5(
n

j n~y!einvt. ~A18!
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The angular frequencyv is given to first order inda by
v5vcr1v8da. Herevcr is the imaginary part of that eigen-
value of the transients of the asynchronous solution at
a5acr for which Re(l)50. The Fourier components
j n(y) of j (y,t) can be expanded inda as

j n~y!5~da! unu/2@ j n
~0!~y!1 j n

~1!~y!~da!1/21•••#
~A19!

for nÞ0, while j 0(y) is of orderda. Therefore we have that
j is of orderda1/2, so that the critical exponentc is 1
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